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atmospheric turbulence which acts to transfer heat
upward.

These observations and explanations suggest strongly
that the urban heat island is the result of a complex set
of interacting physical processes. In these circumstances
any one-dimensional explanation can have little useful-
ness. It may be possible to identify the dominant pa-
rameter for the particular topography and meteorology
of a given city, but it is decidedly misleading to general-
ize such results to other situations.

In surveying the explanations mentioned above, the
complete absence of numerical estimates of the order of
magnitude of the suggested mechanisms is striking. In
this regard Landsberg refers to Sundorg's (1951) sta-
tistical analysis as ". . . an attempt to underbuild the
observed facts by a theory." It is curious that pure
empiricism appears to be "theoretical" in the literature
of the heat island. In the next section, we will outline a
simple energy budget theory to be applied to the urban
atmosphere. In applying energy budget theory to the
urban climate we will not consider the possible role of
pollution on the radiation regime, although we note that
this is undoubtedly an important aspect.

3. An atmospheric energy budget model

The energy budget model we discuss here was formu-
lated as a teaching tool. Our objective was to form the
simplest possible set of equations which still retained
the essential physics of the atmospheric surface layer
but which also could be conveniently solved with the
use of a small computer in the classroom or laboratory.

This model is essentially derived from the work of
Halstead et al. (1957). We start with the energy balance
equation for the surface of the earth,

LE=-pLK
dq

(4)

RN=LE+H+S, (1)

where R^ is the net radiation flux, E the evaporation
rate, L the latent heat of water (so that LE is the latent
heat flux), H the sensible heat flux to the air, and S the
flux of heat into the soil. The terms on the right are
defined to be positive for transfer away from the inter-
face. Our strategy is now to seek physical relationships
for each of these terms in such a way that we obtain a
closed set of equations. The net radiation term can be
written as

RN= (1— a)TrR0\ sin<£ sin5+cos<£ cos5 COS7I —7-RJV, (2)

where a is the albedo for incoming solar radiation, Tr a
transmission coefficient for the atmosphere, RB the solar
constant, 4> latitude, 5 solar declination, 7 the solar hour
angle, and IRN the net infrared flux at the surface of
the earth.

The turbulent fluxes of latent and sensible heat may
be written as

86
H=-pCpKh—, (3)

dZ

where 6 is potential temperature, p air density, Cv the
specific heat at constant pressure, q the specific humdi-
ity, KH and Kv the turbulent diffusivities for heat and
water vapor, respectively, and Z distance from the
interface. Eqs. (3) and (4) are only definitions of diffu-
sivity. For neutral and near-neutral stability, the
diffusivity for momentum, Km, is given by

Km=kZU., (5)

where k is the von Karman constant, and U* the friction
velocity, defined by

CT.«(T/P)*, (6)

where r is the downward Mx of momentum. Assuming
T is constant, the logarithmic wind law may be inte-
grated to yield

., /U.\ / Z\
£/ = (—) lnf-V (7)

\k / \ZJ
where Zo is a function of surface roughness. Solving this
equation for U* and substituting in (5) gives

•A-m ""

k2UZ
(8)

We now assume that Kh —KT =Km so that the turbulent
fluxes become:

' • [ •
-pCpk

2U~i 86

ln(Z/Z0)JdlnZ'

r-pLk%U-\ dq
LE=\ .

Un(Z/Zo)JdlnZ

The soil heat flux is given by

8T
S=-k.—,

dZ

(9)

(10)

(11)

where T is soil temperature, k, the soil thermal conduc-
tivity, and Z distance from the interface. In order to cal-
culate the soil heat flux at any time, it is necessary to
solve the one-dimensional form of the Fourier heat con-
duction equation, i.e.,

8T k. 82T

dt PsC 8Z2'
(12)

where p, and C are soil density and specific heat
capacity.

We lack as yet a boundary condition for water vapor.
Rather than attempting to calculate soil water trans-
port, we make the assumption that the specific humid-
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ity q0 at height Zo, is a function of the temperature To

at that level. If the air is saturated, as it would be in a
freely transpiring plant canopy, then

go = ?Sat(r0), (13)

Where qaat(To) is the saturation specific humidity at
the temperature To. The saturation specific humditiy
function can be approximated by

1
?Sa t=-[3.74+2.64(r0/10)2]X10-3. (14)

In order to make calculations over an unsaturated
canopy, such as a city, we add the definition of relative
humidity, RH, to the above relationships and, after
recombination, we have

RH
?o=—[3.74+2.64 (To/10)2] X10-3, (15)

where we will take RH as constant in these calculations.
Over a surface consisting of a mixture of freely trans-
piring canopies and totally dry streets and buildings,
we will assume that RH can be interpreted as the frac-
tion of total area occupied by transpiring plants.

Eqs. (1), (2), (9), (10), (11), (12) and (15) now con-
stitute the model. To proceed further, the equations
must be put in finite difference form. We define the fol-
lowing heights: Z\ is the canopy height and Z2 is a
height well above the canopy, where we will assume the
meteorological conditions to be constant. In the soil we
will assume the temperature to be constant at depth
2d, and we will calculate temperature only at depth d.
We assume the air temperature to be isothermal in the
canopy between the surface and height Zo, so that TQ

can also be interpreted as the surface temperature.
In finite difference form equations (9), (10), (11),

and (12) then become:

(r2+rdz2-r0), (16)
Qn(Z2/Zo)j

LE=

-k.
—(

d

*. r'
.= / (Tb-2T.+T0)dt,

P.C<P Jo

(17)

(18)

(19)

where Fd is the adiabatic lapse rate, T, the soil tempera-
ture at depth d, Tb the soil temperature at depth 2d, and
the quantity in parentheses in (19) is the finite differ-
ence form of the second derivative in Eq. (12). It should
be noted that we have assumed that H, LE and U* are

constant between Zo and Z2. This assumption is incon-
sistent with the earlier assumption that Z2 is high
enough that the meteorological parameters can be
taken as constant. The implications of this inconsist-
ency will be discussed later.

Eqs. (1), (2), (15), (16), (17), (18) and (19) consti-
tute the complete model. We have included no equa-
tions for the net infrared exchange. This could easily
be done by using an empirical relationship, such as the
one proposed by Swinbank (1963) for the atmospheric
emission. For these calculations, however, we have
chosen to hold IRN constant. This assumption appears
to have no important effect on the model results.

The input information required to solve these equa-
tions is as follows:

1) Latitude <j>, date, atmospheric transmission coeffi-
cient Tr, and surface albedo a.

2) f/2, T2 and <?2, the meteorological conditions at
height Z2.

3) Zo, the roughness of the canopy.
4) C, k, and RH, the soil heat capacity, conductivity,

and atmospheric relative humidity near the soil surface.
5) Tb, the temperature at depth 2d.

The fundamental assumptions made in formulating
this model are that 1) horizontally homogeneity is as-
sumed in all meteorological and soil parameters; 2)
the turbulent diffusivities for heat and water vapor is
given by the near-neutral value for momentum; 3) the
turbulent fluxes of heat and water vapor are assumed to
be constant between Zo and Z2; 4) the canopy is
uniquely characterized by the roughness length Zo; 5)
the relative humidity at height Zo is a constant; 6) tem-
perature, wind speed, and specific humidity are con-
stant at height Z2; 7) the canopy temperature is iso-
thermal from the surface to height Zo; and 8) the infra-
red radiation balance, /i?jv, is taken as a constant.

If this model were to be applied to a plant canopy, it
must be recognized that the physical and biological
processes within the canopy are treated in the crudest
manner possible. The vertical distributions of wind
speed, temperature and specific humidity within the
canopy, for instance, are known to differ considerably
from the logarithmic distributions assumed here. The
model is too simple to allow the calculation of interest-
ing feedback effects of the biological processes on the
canopy microclimatology. In this model the only feed-
back of this kind permitted is through the effect of
canopy growth which could be handled as an increasing
roughness length Zo.

In applying the model to a biologically inactive urban
environment where the canopy consists of buildings,
some of the difficulties vanish. The RH parameter can
now be interpreted as the constantjfraction of the city
occupied by evaporating surfaces, which may be a
better assumption than holding the relative humidity
constant.




















